¸ÞÀθ޴º¹Ù·Î°¡±â

ÇѾç´ëÇб³ ERICA »êÇÐÇù·Â´Ü

ȨÀ¸·Î ¹Ù·Î°¡±â > ¿¬±¸Á¤º¸ > ¿¬±¸¼º°ú > ±ÝÁÖÀÇ ¿ì¼ö³í¹®

¿¬±¸¼º°ú > ±ÝÁÖÀÇ ¿ì¼ö³í¹®

  • ÇѾç´ëÇб³ ÀçÁ÷ÁßÀÎ ÀüÀÓ±³¿øÀÌ ÃâÆÇÇÑ SCIE±Þ ³í¹®Áß »óÀ§ 10%À̳» ³í¹® (Àι®°è¿­ SSCI »óÀ§50%À̳»)
  • ¸ÅÁÖ ¾÷µ¥ÀÌÆ®
°Ô½Ã±Û

SCI Article

Tuning the response selectivity of graphene oxide fluorescence by organometallic complexation for neurotransmitter detection
¼º¸í ±èÁ¾È£ ()
¼Ò¼Ó °øÇдëÇÐ Àç·áÈ­ÇаøÇаú
Ä·ÆÛ½º
¿ì¼ö¼±Á¤ÁÖ 2019³â 05¿ù 3°ÁÖ
Author Jeon, Su-Ji (Dept Chem Engn); Choi, Chanhee (Dept Chem Engn); Ju, Jong-Min (Dept Chem Engn); Lee, Sin (Dept Chem Engn); Park, Jung Hyun (Dept Chem Engn); ±èÁ¾È£ (Dept Chem Engn) corresponding author;
Corresponding Author Info Kim, JH (reprint author), Hanyang Univ, Dept Chem Engn, Ansan 426791, South Korea.
E-mail À̸ÞÀÏkjh75@hanyang.ac.kr
Document Type Article
Source NANOSCALE Volume:11 Issue:12 Pages:5254-5264 Published:2019
Times Cited 0
External Information http://dx.doi.org/10.1039/c9nr00643e
Abstract It is of great interest to design nanomaterial biosensors that can selectively detect target molecules without the use of fragile and expensive antibodies. Here, we report a chemical approach to modulate the response selectivity of graphene oxide (GO) fluorescence for neurotransmitters, in order to design an optical biosensor for the selective detection of dopamine without using antibodies. To this end, GO was functionalized with six different amino acids, followed by the immobilization of seven metal ions, resulting in the production of forty-two different GO nanohybrids (denoted GO-AA-MI derivatives). The fluorescence response of GO-AA-MI derivatives to dopamine, norepinephrine, and epinephrine was modulated by varying the type of amino acids and metal ions introduced. Tyrosine-modified GO with Fe2+ ions (GO-Y-Fe) exhibited selective quenching of its fluorescence in the presence of dopamine whereas lysine-modified GO with Au3+ ions (GO-K-Au) showed a selective increase in fluorescence upon addition of norepinephrine. The GO-Y-Fe sensor developed was able to differentiate dopamine from similar structures of norepinephrine and epinephrine, as well as abundant interferents such as ascorbic acid and uric acid, without the use of antibodies. In addition, the GO-Y-Fe sensor successfully detected dopamine secreted from living neuron cells in a rapid and simple manner.
Web of Science Categories Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied
Funding National Research Foundation of Korea - Ministry of Science and ICT [NRF-2014R1A2A1A11051877, NRF-2017R1A2B2008455]
Language English
attached file
¸®½ºÆ®