메인메뉴바로가기

한양대학교 ERICA 산학협력단

홈으로 바로가기 > 연구정보 > 연구성과 > 금주의 우수논문

연구성과 > 금주의 우수논문

  • 한양대학교 재직중인 전임교원이 출판한 SCIE급 논문중 상위 10%이내 논문 (인문계열 SSCI 상위50%이내)
  • 매주 업데이트
게시글

SCI Article

Designing Hierarchical Assembly of Carbon-Coated TiO2 Nanocrystals and Unraveling the Role of TiO2/Carbon Interface in Lithium-Ion Storage in TiO2
성명 방진호 ()
소속 대학원 바이오나노학과
캠퍼스
우수선정주 2019년 04월 3째주
Author Ha, Je Uk (Dept Bionano Technol); Lee, Jeongmin (Dept Bionano Technol); Lee, Moo Dong (Dept Bionano Technol); Lee, Junghyun (Dept Bionano Technol); 방진호 (Dept Bionano Technol) corresponding author; Abbas, Muhammad A. (Nanosensor Res Inst); Bang, Jin Ho (N
Corresponding Author Info Bang, JH (reprint author), Hanyang Univ, Dept Bionano Technol, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi Do, South Korea.; Bang, JH (reprint author), Hanyang Univ, Nanosensor Res Inst, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi Do, South Korea.; Bang, JH
E-mail 이메일jbang@hanyang.ac.kr
Document Type Article
Source ACS APPLIED MATERIALS & INTERFACES Volume:11 Issue:12 Pages:11391-11402 Published:2019
Times Cited 0
External Information http://dx.doi.org/10.1021/acsami.8b21705
Abstract Despite the many benefits of hierarchical nanostructures of oxide-based electrode materials for lithium-ion batteries, it remains a challenging task to fully exploit the advantages of such materials partly because of their intrinsically poor electrical conductivities. The resulting limited electron supply to primary particles inside secondary microparticles gives rise to significant variation in the lithium ion (Li+) storage capability within the nanostructured particles. To address this, facile annealing, where in situ generated carbon-coated primary particles were assembled into porous microagglomerates, is demonstrated to prepare nanostructured titanium dioxide (TiO2). A systematic study on the effect of the carbon coating reveals that it is exclusively governed by the characteristics of the TiO2/carbon interface rather than by the nature of the carbon coating. Depending on their number, oxygen vacancies created by carbothermal reduction on the TiO2 surface are detrimental to Li+ diffusion in the TiO2 lattice, and structural distortion at the interface profoundly influences the Li+ (de)intercalation mechanism. This new insight serves as a stepping stone toward understanding an important yet often overlooked effect of the oxide/carbon interface on Li+ storage kinetics, thereby demanding more investigations to establish a new design principle for carbon-coated oxide electrode materials.
Web of Science Categories Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
Funding Samsung Research Funding Center of Samsung Electronics [SRFC-MA1601-03]; Basic Science Research Program through the National Research Foundation (NRF) of Korea - Ministry of Science and ICT [NRF-2016R1A1A1A05005038, NRF-2018M3A7B8061494]; Ministry of Educ
Language English
attached file
리스트